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SUMMARY

The overall test for lack of fit in autoregressive-moving average models proposed by Box &
Pierce (1970) is considered. It is shown that a substantially improved approximation results
from a simple modification of this test. Some consideration is given to the power of such tests
and their robustness when the innovations are nonnormal. Similar modifications in the overall
tests used for transfer function-noise models are proposed.
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Transfer function-noise model.

1. INTRODUCTION

Consider a discrete time series {w,} generated by a stationary autoregressive-moving
average model

$(B)w, = 0(B)a,

where ¢(B)=1-¢,B—...—¢,B?, §(B)=1-6,B—...—0,B%, Btw,=w,_;, and {a} is a
sequence of independent and identically distributed N (0, 0%) random deviates. The w,’s can
in general represent the d-th difference or some other suitable transformation of a non-
stationary series {z}.

After a model of this form has been fitted to a series wy, ..., w,, it is useful to study the
adequacy of the fit by examining the residuals d,,...,d, and, in particular, their auto-
correlations

n n
o= 3 d,d,_k/z @ (k=1,2,..).
1=k+1 =1
An informal graphical analysis of these quantities combined with overfitting (Box &
Jenkins, 1970, §8.1) usually proves most effective in detecting possible deficiencies in the
model. In addition, however, it is often worthwhile to look at an overall criterion of adequacy
of fit. Box & Pierce (1970) noted that if the model were appropriate and the parameters were
known, the quantity
m
Qr) = n(n+2)k21 (n—k)=1r, (1-1)
where
n n
= 2 atat—k/z aj,
t=k+1 =1
would for large n be distributed as x2, since the limiting distribution of r = (ry,...,7,,)" is
multivariate normal with mean vector zero (Anderson, 1942; Anderson & Walker, 1964),
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var(r,) = (n—k)/{n(n+2)} and cov(ry,7) =0 (k=+!). Using the further approximation
var (r;) = 1/n, Box & Pierce (1970) suggested that the distribution of

Qr)=n ﬁ A (1-2)

k=1

could be approximated by that of 2. Furthermore, they showed that when the p +q para-
meters of an appropriate model are estimated and the #,’s replace the r,’s, then

m

o =n3A

k=1

would for large n be distributed as x2,_,_, yielding an approximate test for lack of fit.

In applications of this test, suspiciously low values of @(#) have sometimes been observed,
and studies by the present authors, reported in a University of Wisconsin technical report,
and by Davies, Triggs & Newbold (1977) have verified that the distribution of @(7) can
deviate from x2,_,_ . This observation was also made by Prothero & Wallis (1976) in the
discussion of their paper. The observed discrepancies could be accounted for by several
factors, for instance departures from normality of the autocorrelations. It appears, however,

that the main difficulty is caused by the approximation of (1-1) by (1-2). A modified test
based on the criterion

Q) = n(n+2) kf";l (n—k)172

was recommended by the present authors but its usefulness was questioned by Davies et al.
(1977) on the ground that the variance of §(#) exceeds that of the x2,_,_, distribution. Our
studies show however that the modified test provides a substantially improved approxima-
tion that should be adequate for most practical purposes.

2. MEANS AND VARIANCES OF Q(r) axD {(r)

To examine the overall test, it is useful to consider initially the quantities @(r) and Q(r)
which involve the white noise autocorrelations r. Since the limiting distribution of r is
N(0,n711,), @(r) and {(r) are asymptotically distributed as x2, and have expectation m and
variance 2m. For finite values of n, {(r) has expectation m, whereas

m 1
BQe) =n 8 B = 2 (1-T51). (21)

Clearly, unless % is large relative to m, E{Q(r)} can be much smaller than m.
The variances are

var{Q(r)} = n? 3 var(r2) + m’S 3 cov (r2,1),
k=1

k=1 l=k+1
(2:2)
var{{(r)} = n¥(n+22 3 (n—k)-2var (r3) + 2n(n + 22"S 3 (n—k)n—0)"cov (r,1),
k=1 k=1 l=k+1

where, for fixed n, cov (r2,72) is nonzero. The univariate and bivariate moments of the r;’s
needed to evaluate (2-2) can be obtained using the identity

E{(Ea0_ 1) (Zaa)}
E{(Zayt}
which follows from independence of the r,’s and Za} (Anderson, 1971, p. 304). Taking

E(rir)) = (2-3)
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var(a,) = 1 without loss of generality, we have that Xa? is distributed as x2 and
EZa?)it) = n(n+2)... (n+ 2+ 2j—2). The term in the numerator of (2:3) can be evaluated
by multiplying term by term and taking the expected value. It can thus be verified that for
k<in

6(3n—5k)+3(n—k)2 (n—k)?

nn+2)(n+4)(n+6) ni(n+2)2

var (r2) =
(2-4)
(n=k)(n=D+4(n—-N+8n—k=1) (n—Fk)(n-1)
n(n+2) (n+4)(n+6) n2(n + 2)2
The exact variances of @(r) and {(r) are readily evaluated using (2-2) and (2-4). By ignoring
terms of order higher than 1/n it may be shown that approximately, for » large relative to m,

2m—5
po .

cov (r3,r2) =

var{Q(r)} = 2m(1 + 2= 10), var {Q(r)} = 2m(1 +

n

The variance of §(r) exceeds 2m but the absence of a location bias makes its distribution
much closer to x2, than that of @(r). This is illustrated in Fig. 1 which compares Monte Carlo
distributions of @(r) and @(r) based on 1000 replications to the y2, distribution for m = 30
and n = 100. The observed distribution of Q(r) has mean 24:97 and variance 60-47; @(r) has
mean 30-17 and variance 88-25. These values agree quite closely with the theoretical values
24-85, 63-15, 30-00 and 91-48, respectively. Also shown by dashed lines in Fig. 1 is a dis-
tribution of the form ay? for which both the mean and variance are adjusted to correspond
with those of §(r). There is perhaps somewhat better agreement in the upper tail but the main
improvement results from adjusting the mean.
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Fig. 1. Monte Carlo distributions of @(r) and §(r) and approximations; 1000 replications, n = 100
and m = 30; solid line, 2,; dashed line, ay} (a = 1-52, b = 19-68).

3. THE TEST STATISTICS Q(7) AND (J(F)
Box & Pierce (1970) showed that the residual autocorrelations # = (#,,...,7,) from a
correctly identified and fitted model can to a close approximation be represented as
f=(I—-D)r,
where I — D is an idempotent matrix of rank m — p —q. With this relationship the expectation
of Q(7) is
E{Q(#)}=E{nr'(I—-D)r} = tr{n(I-D)C},
where C is the exact covariance matrix of . The matrix D has its largest elements in the

upper left corner with the remaining elements d;; decreasing to zero as ¢ and/or j increases.
The matrix DC is therefore nearly equal to n—1 D. Using this approximation and noting that
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E{Q(r)} = tr (nC), we have

EQF)}=E{Q(r)}—p—q. (3-1)
On combining (2-1) and (3-1), the expected value of Q(#) is approximately
. mn m+1 .
B}~ s (1- ") -4, (32)

which indicates that the distribution of @(#) can deviate markedly from X2—p—q Unless n is

large relative to m. However, using the same approximations it can be shown that
EQ@#}=E{{(r)}~p—q=m-p—q.

It may be expected therefore that the distribution of {(#) might be approximated by the

Xo—p—q distribution.

The adequacy of this approximation was questioned by Davies et al. (1977) on the ground
that the variance of §(7) exceeds 2(m —p—gq). However, results from a simulation study
reported in the next section suggest that the reduction in the location bias results as before
in a markedly improved approximation that should be adequate for most practical purposes
It also appears that the expression for the variance given by Davies et al., which is not
exact, overestimates the variance of {)(7). For example, for fitting a first-order auto-
regressive model to white noise, Davies et al. obtain for m = 20 and = = 50, 100 and 200,

var{Q(i“)} = 5880, 50-08 and 44-20, respectively, while our study gives var{Q(f)} = 46-84,
43-20 and 41-97, respectively.

4. SOME NUMERICAL RESULTS
4-1. Comparison of the overall tests
A Monte Carlo study was conducted by generating 4000 sets of observations {wy, ..., w,}
from the first-order autoregressive model w,— $w,_; = a,, estimating ¢ by the approximate
maximum likelihood estimator

n n—1
(n=2) (0= 1) 5 g[S ut
i=2 =2
(Box & Jenkins, 1970, p. 279), and calculating autocorrelations of the residualsd, = (1 —$2) w,,
d, = w,—$w,_1 (t = 2,...,n). The statistics Q(#) and @(#) were then calculated.

Table 1 shows the proportion of @(#) and @(#) values exceeding the upper 5, 10 and 25
percentage points of the y2,_, distribution for a few combinations of » and m and for ¢ = 0-5.
The table also gives the means and variances of the observed distributions. It seems clear
that although the variance of {(#) exceeds 2(m —1) a test based on this statistic would for
smaller sample sizes provide a considerable improvement over the previously used @(#) test.

Table 1. Empirical means, variances and significance levels of the statistics
Q(f) and Q(7); data generated from the model w,— }w,_, = a,

Q) Q)
% level % level
n m Mean Var. 5 10 25 Mean Var. 5 10 25
50 10 7-48 13-79 2:3 4-7 13-4 8-82 19-11 5-3 9-5 23-0
20 13-96 27-50 1-3 2-3 6-4 18-58 47-76 6-1 10-4 23-2
100 10 8-14 16-04 34 7-0 18-2 8-83 18-88 50 9-9 23-1
20 16-26 35-45 2:5 5-0 13-1 18:63 46-46 58 10-2 22-8
30 23-53 55-74 1-7 3-6 9-1 28-58 81-71 7-2 11-6 23-4
200 10 8:57 16-76 4-2 8-3 21-5 8-92 18-16 50 9-8 23-9
20 17-46 36-36 3-5 6-9 17-6 18-66 41-51 54 10-0 22-7

30 26-11 56-01 2-9 56 14-2 28-66 67-37 59 105  23-8
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4-2. An alternative test based on Q(7)

The above results suggest that a closer approximation to the distribution of @(#) should be
obtainable by appropriate adjustment of the mean of the approximating distribution.
Furthermore, Table 1 shows values of var {¢(#)} which are nearly twice the mean, suggesting
the approximation Q(f) ~ x% @, With E{Q(7)} given by (3-2). Empirical significance levels
obtained using this approximation and the criterion @(#) are compared in Table 2. The
agreement is quite close. It may however be more convenient generally to use Q(#), since the
test based on Q(#) will have noninteger degrees of freedom.

Table 2. Empirical significance levels based on the approximations Q(F) ~ xk oy and
Q(i’) ~x2._1; data generated from the model w,—¢w,_, = a

Q(F) ~ Xkten Q) ~xt—
m = 10 m = 20 m = 10 m = 20
% level % level

n ¢ 5 10 25 5 10 25 5 10 25 5 10 25

50 0-1 41 83 212 4-6 81 209 4-7 93 214 59 101 225

0-4 43 85 221 4-6 86 21-6 5-1 9:3 22-8 60 103 23-0

0-7 47 95 233 5-1 9-6 226 54 101 236 67 11-3 24-0

100 0-1 4-3 88 234 5-1 9-3 22-2 4-7 9-3 235 59 100 22.7
0-4 44 85 235 5-3 91 227 4-8 9-3 235 60 100 230

0-7 47 90 241 56 96 227 49 94 240 62 103 232

200 0-1 50 96 24-1 5-2 9.8 22-7 52 99 242 55 102 232
0-4 48 95 23-8 5-1 9-6 225 5-1 9-8 24-0 54 10-1 22-8

0-7 48 99 24-1 49 100 22-5 50 101 24-2 53 105 22-8

4-3. A power calculation

The two criteria @(#) and @(#) differ in the weighting which is applied to the autocorrela-
tions #, with {(#) giving more emphasis to later autocorrelations than @Q(#). This would
perhaps be an advantage if serial correlation occurs at high lags k. However, for large » this
difference should be rather small. If the type of discrepancies to be expected is known, tests
specifically aimed at detecting these discrepancies should be used. Such specific tests will of
course be much more powerful. This point is illustrated in Table 3 which empirically com-
pares the power of the overall tests and the method of ‘“‘overfitting”’ (Box & Jenkins, 1970).
The results are based on data generated from a second-order autoregressive model, with a
first-order model being fitted to obtain Q(#) and @(#). As might be expected, the overall tests

Table 3. Empirical power of the overall tests and the method of overfitting for n = 100.
Assumed model: w,— ¢w,_, = a;; true model: (1—0-7B) (1 -Gy B)w, = a,. Nominal
significance level: 59,

Test m  Gy=0 G=01 G=03 G=05 G=07 G =09
Overfitting 53 120 59-7 93-8 99-7 99-1
Q) ~xbosy 10 47 67 28-6 72-0 96-6 99-9
20 56 7-3 24-4 62-8 937 997
30 60 77 22-9 581 91-7 99-5
QP ~x2y 10 49 70 28-9 71-6 96-2 99-9
20 62 8-0 247 61-7 93-2 99-6

30 7-0 9-0 23-7 57-0 90-5 99-3
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are much less powerful than overfitting which tests the hypothesis that the second-order
autoregressive coefficient is zero. A smaller value of m improves the power of the overall
tests for this particular alternative.

4-4. Effect of nonnormality of the a,’s

In developing the overall test, it is assumed that the innovations @, in the model are
normally distributed. Circumstances occur where this assumption is not true. For example,
it is known that stock price innovations often have highly leptokurtic distributions. Results
by Anderson & Walker (1964) show that the asymptotic normality of the 7,’s does not require
normality of the a,’s, only that var (@) is finite. The overall test might therefore be expected
to be insensitive to departures from normality of the a;’s. This is supported by Table 4, which
shows the behaviour of §J(#) when the a,’s have a double exponential and a uniform distribu-
tion. The results agree closely with those obtained under the normality assumption in
Table 1.

Table 4. Empirical means, variances and significance levels of Q(7) when the innovations a, have
(i) @ double exponential and (ii) a uniform distribution; data generated from the model

—tw, =g
(i) a,~double exponential (ii) @, ~uniform
% level % level

n m Mean Var. 5 10 25 Mean Var. 5 10 25

50 10 8-50 18:59 47 86 20-7 9-01 19-35 56 10-0 24-4

20 17-77 47-00 54 8-8 19-6 18-95 52-39 7-3 12-1 24-3

100 10 8:80 1870 50 91 22-4 9-11 19-41 55 10-8 25-3
20 18-37 4362 48 9-2 22:0 19-00  47-52 6-4 11-5 25-7

30 27-94 7660  6-3 10-1 21-9 28-98 81-72 7-5 124 25-3

5. EXTENSION TO TRANSFER FUNCTION NOISE MODELS
To check the adequacy of the transfer function in the model

_w(B) | 8B)
=SB B
where
w(B)[3(B) = (wy—wy B~ ... —w, B¥)|(1—8,B—...— 8§, B")

and where the input series {o;} is assumed to be white noise and independent of {a}, it is

useful to examine the cross-correlations between {o,} and the residuals {d;}
n n n no\V2
= 3 wsdf(Bafa)” =01,
la=l (=l

lamk4-1

D. A. Pierce in a University of Wisconsin technical report, Box & Jenkins (1970, §11.3) and
Pierce (1972) propose an overall test for lack of fit based on approximating the distribution of

S(#*) =n S (7
k=0

by the x2_,_, distribution. However, on arguing as above, it appears that a criterion of the
form

B(7*) = n? 3, (n— k)1 (74)?
k=0
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would be more appropriate. The criterion S(#}) is obtained by approximating the variance of
the k-th sample cross-correlation between {} and {@} by 1/n, while the actual variance is
(n—k)[n2.

The modification considered in the previous sections applies to the overall test for lack
of fit in the noise model 6(B)/¢$(B) discussed by Box & Jenkins (1970, §11.3).

This work was sponsored by the United States Army Research Office and the Air Force
Office of Scientific Research.
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